Refined UNet: UNet-Based Refinement Network for Cloud and Shadow Precise Segmentation

Author:

Jiao Libin,Huo Lianzhi,Hu Changmiao,Tang Ping

Abstract

Formulated as a pixel-level labeling task, data-driven neural segmentation models for cloud and corresponding shadow detection have achieved a promising accomplishment in remote sensing imagery processing. The limited capability of these methods to delineate the boundaries of clouds and shadows, however, is still referred to as a central issue of precise cloud and shadow detection. In this paper, we focus on the issue of rough cloud and shadow location and fine-grained boundary refinement of clouds on the dataset of Landsat8 OLI and therefore propose the Refined UNet to achieve this goal. To this end, a data-driven UNet-based coarse prediction and a fully-connected conditional random field (Dense CRF) are concatenated to achieve precise detection. Specifically, the UNet network with adaptive weights of balancing categories is trained from scratch, which can locate the clouds and cloud shadows roughly, while correspondingly the Dense CRF is employed to refine the cloud boundaries. Eventually, Refined UNet can give cloud and shadow proposals sharper and more precisely. The experiments and results illustrate that our model can propose sharper and more precise cloud and shadow segmentation proposals than the ground truths do. Additionally, evaluations on the Landsat 8 OLI imagery dataset of Blue, Green, Red, and NIR bands illustrate that our model can be applied to feasibly segment clouds and shadows on the four-band imagery data.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference45 articles.

1. Cloud and cloud shadow detection in Landsat imagery based on deep convolutional neural networks

2. Very deep convolutional networks for large-scale image recognition;Simonyan;arXiv,2014

3. Deep Residual Learning for Image Recognitionhttp://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

4. Densely Connected Convolutional Networkshttp://openaccess.thecvf.com/content_cvpr_2017/html/Huang_Densely_Connected_Convolutional_CVPR_2017_paper.html

5. Fully Convolutional Networks for Semantic Segmentationhttps://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Long_Fully_Convolutional_Networks_2015_CVPR_paper.html

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3