Abstract
Geo-spatial technologies (i.e., remote sensing (RS) and Geographic Information Systems (GIS)) offer the means to enable a rapid assessment of terrestrial carbon stock (CS) over large areas. The utilization of an integrated RS-GIS approach for above ground biomass (AGB) estimation and precision carbon management is a timely and cost-effective solution for implementing appropriate management strategies at a localized and regional scale. The current study reviews various RS-related techniques used in the CS assessment, with emphasis on arid lands, and provides insight into the associated challenges, opportunities and future trends. The study examines the traditional methods and highlights their limitations. It explores recent and developing techniques, and identifies the most significant RS variables in depicting biophysical predictors. It further demonstrates the usefulness of geo-spatial technologies for assessing terrestrial CS, especially in arid lands. RS of vegetation in these ecosystems is constrained by unique challenges specific to their environmental conditions, leading to high inaccuracies when applying biomass estimation techniques developed for other ecosystems. This study reviews and highlights advantages and limitations of the various techniques and sensors, including optical, RADAR and LiDAR, that have been extensively used to estimate AGB and assess CS with RS data. Other new methods are introduced and discussed as well. Finally, the study highpoints the need for further work to fill the gaps and overcome limitations in using these emerging techniques for precision carbon management. Geo-spatial technologies are shown to be a valuable tool for estimating carbon sequestered especially in difficult and remote areas such as arid land.
Subject
General Earth and Planetary Sciences
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献