How Does Density Impact Carbon Emission Intensity: Insights from the Block Scale and an Optimal Parameters-Based Geographical Detector

Author:

Li Liutong1,Yan Fengying1

Affiliation:

1. School of Architecture, Tianjin University, Tianjin 300072, China

Abstract

Density is a crucial indicator for urban sustainable development and is considered a critical factor influencing the carbon emission intensity of construction land (CICL). The impact of density on carbon emissions has been extensively explored, mainly focusing on grid-scale and single-factor effects. However, how density and its interactions affect carbon emissions at the block scale is unclear. Therefore, based on multiple data sources such as energy consumption, remote sensing, and the point of interest (POI) in the urban block of Changxing County, this study constructed a density system that reflects the block’s physical environment and socioeconomic characteristics. An optimal-parameters-based geographical detector was employed to investigate the effects and interactions of density factors on the carbon emission intensity of residential blocks (CIRB), carbon emission intensity of commercial blocks (CICB), and carbon emission intensity of public blocks (CIPB). The results indicate the following: (1) The impact of density factors on different types of CICL varied significantly. Physical environmental factors (PEFs) had greater explanatory power than socioeconomic factors (SEFs) across the CIRB, CICB, and CIPB, with the floor area ratio (FAR) being the most influential. The spatial morphology of blocks also influenced the relationship between density factors and the CICL. (2) The interactions between the FAR and building density (BD), the FAR and commercial outlet density (COD), and the FAR and population density (PD) had the strongest explanatory power for the CIRB, CICB, and CIPB, respectively, and all exhibited nonlinear enhancements. Some factors exhibited more significant effects only when interacting with others. (3) An association chain encompassing the interactions of multiple density factors was extracted for the CIRB, CICB, and CIPB, respectively, as the basis for conducting collaborative management and control in spatial planning. The research findings can provide decision support for urban planners to consider the comprehensive effects of density factors and promote the development of low-carbon urban spaces.

Funder

National Science Foundation of China, Key Project

Special Funds of the National Natural Science Foundation of China

Publisher

MDPI AG

Reference64 articles.

1. Global typology of urban energy use and potentials for an urbanization mitigation wedge;Creutzig;Proc. Natl. Acad. Sci. USA,2015

2. Intergovernmental Panel on Climate Change (2015). Climate Change 2014 Mitigation of Climate Change, Cambridge University Press.

3. When Can Carbon Abatement Policies Increase Welfare? The Fundamental Role of Distorted Factor Markets;Parry;J. Environ. Econ. Manag.,1999

4. From Urban Density Zoning to Form-based Zoning: Evolution and Demonstration;Jin;Urban Plan. Forum,2018

5. From Physical Expansion to Built-up Area Improvement: Shenzhen Master Plan Transition Forces and Paths;Zou;Planners,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3