Land Use Carbon Emission Estimation and Simulation of Carbon-Neutral Scenarios Based on System Dynamics in Coastal City: A Case Study of Nantong, China

Author:

Xu Qingyun1,Li Kongqing2ORCID

Affiliation:

1. College of Public Administration, Nanjing Agricultural University, Nanjing 210095, China

2. College of Humanities & Social Development, Nanjing Agricultural University, Nanjing 210095, China

Abstract

Land use directly affects the carbon emissions and carbon stock of the ecosystem, and indirectly affects the carbon emissions from anthropogenic activities, which occur more frequently in coastal regions. Taking Nantong City as an example, detailed carbon emission projects were classified and calculated for different land use types by combining land use images of five typical years. Based on the complex relationship between land use carbon emissions and socio-economic factors, the system dynamics model (SD) was used to simulate the land use carbon emissions from 2005 to 2060, and to construct carbon-neutral policy scenarios. Compared with inlands, carbon emissions from land use in Nantong are more pronounced than inland areas, and unique land use types, such as shallows, play an important role as carbon sinks. Total land use carbon emissions show an upward trend from 2005 to 2020 and carbon emissions from construction land dominate. Under the natural development condition, the total net carbon emissions of Nantong are about 4,298,250 tons in 2060, failing to achieve carbon neutrality. The scenario with all four policies adjusted (LO, IO, TP, and PC) has the best emission reductions, peaking at 10,949,010 tons of net carbon emissions in 2029 and reducing them to 1,370,202 tons in 2060, which is the scenario closest to the carbon-neutral target. Overall, this study provides a meaningful conclusion for the study of land use carbon emission characteristics and low-carbon pathways in coastal cities, which can guide the formation of government policies.

Funder

General Project of National Social Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3