Affiliation:
1. College of Public Administration, Nanjing Agricultural University, Nanjing 210095, China
2. College of Humanities & Social Development, Nanjing Agricultural University, Nanjing 210095, China
Abstract
Land use directly affects the carbon emissions and carbon stock of the ecosystem, and indirectly affects the carbon emissions from anthropogenic activities, which occur more frequently in coastal regions. Taking Nantong City as an example, detailed carbon emission projects were classified and calculated for different land use types by combining land use images of five typical years. Based on the complex relationship between land use carbon emissions and socio-economic factors, the system dynamics model (SD) was used to simulate the land use carbon emissions from 2005 to 2060, and to construct carbon-neutral policy scenarios. Compared with inlands, carbon emissions from land use in Nantong are more pronounced than inland areas, and unique land use types, such as shallows, play an important role as carbon sinks. Total land use carbon emissions show an upward trend from 2005 to 2020 and carbon emissions from construction land dominate. Under the natural development condition, the total net carbon emissions of Nantong are about 4,298,250 tons in 2060, failing to achieve carbon neutrality. The scenario with all four policies adjusted (LO, IO, TP, and PC) has the best emission reductions, peaking at 10,949,010 tons of net carbon emissions in 2029 and reducing them to 1,370,202 tons in 2060, which is the scenario closest to the carbon-neutral target. Overall, this study provides a meaningful conclusion for the study of land use carbon emission characteristics and low-carbon pathways in coastal cities, which can guide the formation of government policies.
Funder
General Project of National Social Science Foundation of China