Characteristics of an Inorganic Carbon Sink Influenced by Agricultural Activities in the Karst Peak Cluster Depression of Southern China (Guancun)

Author:

Zhang Ning1,Xiao Qiong12,Guo Yongli12,Sun Pingan12,Miao Ying12,Chen Fajia12,Zhang Cheng12

Affiliation:

1. Key Laboratory of Karst Dynamics, Ministry of Natural Resources & Guangxi, International Research Center on Karst under the Auspices of UNESCO, National Center for International Research on Karst Dynamic System and Global Change, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China

2. Karst Ecosystem, National Observation and Research Station, Pingguo 531406, China

Abstract

Land use in karst areas affects soil properties, impacting carbon sinks. Accurate estimation of carbon sink flux in karst areas through zoning and classification is crucial for understanding global carbon cycling and climate change. The peak cluster depression is the largest continuous karst landform region in southern China, with the depressions primarily covered by farmland and influenced by agricultural activities. This study focused on the Guancun Underground River Basin, a typical peak cluster depression basin, where sampling and analysis were conducted during the agricultural period of 2021–2022. Using hydrochemical analysis and isotopic methods, the results indicated that: (1) The primary hydrochemical type in the Guancun Underground River Basin is HCO3-Ca, with hydrochemical composition mainly controlled by carbonate rock weathering. (2) The primary sources of Cl−, SO42−, and NO3− are agricultural activities, with agriculture contributing 0.68 mmol/L to dissolved inorganic carbon (DIC), accounting for about 13.86%, as confirmed by ion concentration analysis and isotope verification. (3) The size of the depression area is proportional to the contribution of agricultural activities to DIC, while also being influenced by dilution effects. A comparison was made regarding the contribution of other land use types to DIC. The impact of land use on DIC in karst processes should not be overlooked, and zoning and classification assessments of carbon sink flux under different influencing factors contribute to carbon peaking and carbon neutrality goals.

Funder

Basic Research Fund Project of the National Key Research and Development Program

Science and Technology Plan Project of Guangxi Province

Institute of Karst Geology, Chinese Academy of Geological Sciences

China Geological Survey

China Foreign Experts Bureau Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3