Abstract
Existing evidence about climate change in Zimbabwe has tended to focus more on elements and events of the climate system, marginalizing changes in the hydrological and ecological system. To contribute to the improved understanding of climate change, this study captured the observations of climate change in Malipati, a remote agrarian dryland area in the Chiredzi District, Zimbabwe. The aim of the study was to gather detailed insights about perceived environmental changes using the evidence drawn from local and indigenous populations who have close interactions with their natural environment. A household questionnaire-based survey with randomly chosen farmers (n = 116) revealed that participants’ observations of changes in hydrological and ecological system were consistent with available evidence of increasing temperatures and little rainfall recorded in the district. Results also showed high sensitivity of the area to climate change that manifest in various indicators: hydrological changes in rivers, streams, swamps, and ground water; and ecological changes through the behaviour of trees, insects, birds, and wild animals. Sex and age of the participants did not influence the way they perceived most of these changes (p > 0.05). However, education and the period of stay in the area were related to the respondents’ perceived changes in river flows and siltation, and the conditions of swamps (p < 0.05). Our study also revealed deeper insights about the human-biodiversity interactions in the face of climate change in unique areas where communities live alongside wildlife. The evidence drawn from local and indigenous populations can be used to inform local-based solutions to the growing problems of climate change and biodiversity loss. Future studies would need to further examine such areas to understand the mitigation and adaptation practices that would promote the sustainable co-existence of humans and wildlife.
Funder
Faculty of Engineering and the Built Environment
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献