The Body’s Cellular and Molecular Response to Protein-Coated Medical Device Implants: A Review Focused on Fibronectin and BMP Proteins

Author:

Chen Yi-Fan,Goodheart ClydeORCID,Rua DiegoORCID

Abstract

Recent years have seen a marked rise in implantation into the body of a great variety of devices: hip, knee, and shoulder replacements, pacemakers, meshes, glucose sensors, and many others. Cochlear and retinal implants are being developed to restore hearing and sight. After surgery to implant a device, adjacent cells interact with the implant and release molecular signals that result in attraction, infiltration of the tissue, and attachment to the implant of various cell types including monocytes, macrophages, and platelets. These cells release additional signaling molecules (chemokines and cytokines) that recruit tissue repair cells to the device site. Some implants fail and require additional revision surgery that is traumatic for the patient and expensive for the payer. This review examines the literature for evidence to support the possibility that fibronectins and BMPs could be coated on the implants as part of the manufacturing process so that the proteins could be released into the tissue surrounding the implant and improve the rate of successful implantation.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference119 articles.

1. Primary and revision hip arthroplasty: 5-year outcomes and influence of age and comorbidity;Lübbeke;J. Rheumatol.,2007

2. Total hip arthroplasties: What are the reasons for revision?

3. Swedish Hip Arthroplasty Register;Kärrholm,2018

4. Comparison of readmission and early revision rates as a quality metric in total knee arthroplasty using the Nationwide Readmission Database

5. The effect of fibronectin and a bone xenograft on regenerative treatment: A feasibility study;Camargo;Compend. Contin. Educ. Dent. (Jamesburg, N.J. 1995),2006

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3