Inhibition of AKT-Signaling Sensitizes Soft Tissue Sarcomas (STS) and Gastrointestinal Stromal Tumors (GIST) to Doxorubicin via Targeting of Homology-Mediated DNA Repair

Author:

Boichuk SergeiORCID,Bikinieva FiruzaORCID,Nurgatina Ilmira,Dunaev Pavel,Valeeva ElenaORCID,Aukhadieva Aida,Sabirov Alexey,Galembikova AigulORCID

Abstract

Activation of the phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway is well documented for a broad spectrum of human malignancies supporting their growth and progression. Accumulating evidence has also implicated AKT as a potent modulator of anti-cancer therapies via regulation of DNA damage response and repair (DDR) induced by certain chemotherapeutic agents and ionizing radiation (IR). In the present study, we examined the role of AKT signaling in regulating of Rad51 turnover and cytotoxic effects of topoisomerase II inhibitor, doxorubicin (Dox) in soft tissue sarcomas (STS) and gastrointestinal stromal tumors (GIST) in vitro. Blocking of AKT signaling (MK-2206) enhanced cytotoxic and pro-apoptotic effects of Dox in vast majority of STS and GIST cell lines. The phosphorylated form of Akt co-immunoprecipitates with Rad51 after Dox-induced DNA damage, whereas Akt inhibition interrupts this interaction and decreases Rad51 protein level by enhancing protein instability via proteasome-dependent degradation. Inhibition of Akt signaling in Dox-treated cells was associated with the increased number of γ-H2AX-positive cells, decrease of Rad51 foci formation and its colocalization with γ-H2AX foci, thereby revealing unsuccessful DDR events. This was also in consistency with an increase of tail moment (TM) and olive tail moment (OTM) in Dox-treated GIST and STS cells cultured in presence of Akt inhibitor after Dox washout. Altogether, our data illustrates that inhibition of AKT signaling is STS and GIST might potentiate the cytotoxic effect of topoisomerase II inhibitors via attenuating the homology-mediated DNA repair.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3