Abstract
The paper presents a methodology for training neural networks for vision tasks on synthesized data on the example of steel defect recognition in automated production control systems. The article describes the process of dataset procedural generation of steel slab defects with a symmetrical distribution. The results of training two neural networks Unet and Xception on a generated data grid and testing them on real data are presented. The performance of these neural networks was assessed using real data from the Severstal: Steel Defect Detection set. In both cases, the neural networks showed good results in the classification and segmentation of surface defects of steel workpieces in the image. Dice score on synthetic data reaches 0.62, and accuracy—0.81.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
90 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献