Author:
Nie Guoxia,Xu Daoyun,Wang Xiaofeng,Wang Xi
Abstract
In a regular (d,k)-CNF formula, each clause has length k and each variable appears d times. A regular structure such as this is symmetric, and the satisfiability problem of this symmetric structure is called the (d,k)-SAT problem for short. The regular exact 2-(d,k)-SAT problem is that for a (d,k)-CNF formula F, if there is a truth assignment T, then exactly two literals of each clause in F are true. If the formula F contains only positive or negative literals, then there is a satisfiable assignment T with a size of 2n/k such that F is 2-exactly satisfiable. This paper introduces the (d,k)-SAT instance generation model, constructs the solution space, and employs the method of the first and second moments to present the phase transition point d* of the 2-(d,k)-SAT instance with only positive literals. When d<d*, the 2-(d,k)-SAT instance can be satisfied with high probability. When d>d*, the 2-(d,k)-SAT instance can not be satisfied with high probability. Finally, the verification results demonstrate that the theoretical results are consistent with the experimental results.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)