Convergence of Higher Order Jarratt-Type Schemes for Nonlinear Equations from Applied Sciences

Author:

Behl RamandeepORCID,Argyros Ioannis K.,Mallawi Fouad Othman,Argyros Christopher I.

Abstract

Symmetries are important in studying the dynamics of physical systems which in turn are converted to solve equations. Jarratt’s method and its variants have been used extensively for this purpose. That is why in the present study, a unified local convergence analysis is developed of higher order Jarratt-type schemes for equations given on Banach space. Such schemes have been studied on the multidimensional Euclidean space provided that high order derivatives (not appearing on the schemes) exist. In addition, no errors estimates or results on the uniqueness of the solution that can be computed are given. These problems restrict the applicability of the methods. We address all these problems by using the first order derivative (appearing only on the schemes). Hence, the region of applicability of existing schemes is enlarged. Our technique can be used on other methods due to its generality. Numerical experiments from chemistry and other disciplines of applied sciences complete this study.

Funder

Deanship of Scientific Research (DSR) at King 107 Abdulaziz University, Jeddah, Saudi Arabia

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference33 articles.

1. Iterative Methods for the Solution of Equations;Traub,1964

2. Solutions of Equations and System of Equations;Ostrowski,1960

3. Optimal Order of One-Point and Multipoint Iteration

4. Some efficient fourth order multipoint methods for solving equations

5. Some fourth order multipoint iterative methods for solving equations

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Higher Order Newton-Type Iterations;Mathematical Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3