Fuzzy Order Acceptance and Scheduling on Identical Parallel Machines

Author:

Erişgin Barak Menşure Zühal,Koyuncu MelikORCID

Abstract

In this study, we focus on the fuzzy order acceptance and scheduling problem in identical parallel machines (FOASIPM), which is a scheduling and optimization problem to decide whether the firm should accept or outsource the order. In general, symmetry is a fundamental property of optimization models used to represent binary relations such as the FOASIPM problem. Symmetry in optimization problems can be considered as an engineering tool to support decision-making. We develop a fuzzy mathematical model (FMM) and a Genetic Algorithm (GA) with two crossover operators. The FOASIPM is formulated as an FMM where the objective is to maximize the total net profit, which includes the revenue, the penalty of tardiness, and the outsourcing. The performance of the proposed methods is tested on the sets of data with orders that are defined by fuzzy durations. We use the signed distance method to handle the fuzzy parameters. While FMM reaches the optimal solution in a reasonable time for datasets with a small number of orders, it cannot find a solution for datasets with a large number of orders due to the NP-hard nature of the problem. Genetic algorithms provide fast solutions for datasets with a medium and large number of orders.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference40 articles.

1. Order acceptance and scheduling: A taxonomy and review

2. Order acceptance and scheduling decisions in make-to-order systems

3. A Fuzzy Approach to Support Evaluation of Fuzzy Cross Efficiency

4. Fuzzy Sets, Decision Making, and Expert Systems;Zimmermann,1987

5. Try not to be late!—The importance of delivery service in online shopping;Coşar;Organ. Mark. Emerg. Econ.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3