Static Behavior of a Retractable Suspen-Dome Structure

Author:

Shen Xuhong,Zhang QianORCID,Lee Daniel Sang-HoonORCID,Cai Jianguo,Feng Jian

Abstract

A new design of a radially retractable roof structure based on the concept of the suspen-dome is proposed in this paper. The radially foldable bar structure is strengthened by the lower cable-strut system to obtain a higher structural stiffness. Then the comparison of the static behavior between the retractable suspen-domes and their corresponding foldable bar shell with quadrangular mesh is discussed. Moreover, the effects of different structural and geometric parameters, such as the rise-to-span ratio, the cross-section area of beams, cables and struts, and the pre-stress level of the lower cable-strut system, on the nodal displacements and member forces are investigated systematically. The results show that higher structural stiffness is anticipated with the introduction of cable-strut systems into the hybrid structure. When the rise-to-span ratio is equal to 0.2, the maximal nodal displacement of the suspen-dome reaches the minimal value. The increase of the cross-section area of steel beams contributes an enormous amount to the structural stiffness. Increasing cable and strut sections has little impact on the mechanical behavior of suspen-domes. Moreover, the prestress level of cable-strut systems has a slight influence on the nodal displacements and member forces. Parametric analysis can be regarded as an essential basis for the optimization of the design of a retractable suspen-dome structure.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An adaptive suspended-dome structure: Static control methods based on minimum strain energy;Structures;2024-09

2. Deployable scissor structures: Classification of modifications and applications;Automation in Construction;2024-09

3. Parametric dynamic analysis of tensegrity cable-strut domes;Journal of Theoretical and Applied Mechanics;2024-03-14

4. Mobility analysis of tripod scissor structures using screw theory;Mechanism and Machine Theory;2024-01

5. Qualitative and quantitative analysis of tensegrity domes;Bulletin of the Polish Academy of Sciences Technical Sciences;2023-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3