Abstract
In this paper, we address the estimation of the parameters for a two-parameter Kumaraswamy distribution by using the maximum likelihood and Bayesian methods based on simple random sampling, ranked set sampling, and maximum ranked set sampling with unequal samples. The Bayes loss functions used are symmetric and asymmetric. The Metropolis-Hastings-within-Gibbs algorithm was employed to calculate the Bayes point estimates and credible intervals. We illustrate a simulation experiment to compare the implications of the proposed point estimators in sense of bias, estimated risk, and relative efficiency as well as evaluate the interval estimators in terms of average confidence interval length and coverage percentage. Finally, a real-life example and remarks are presented.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献