A Hybrid Discrete Bacterial Memetic Algorithm with Simulated Annealing for Optimization of the Flow Shop Scheduling Problem

Author:

Agárdi AnitaORCID,Nehéz KárolyORCID,Hornyák OlivérORCID,Kóczy László T.ORCID

Abstract

This paper deals with the flow shop scheduling problem. To find the optimal solution is an NP-hard problem. The paper reviews some algorithms from the literature and applies a benchmark dataset to evaluate their efficiency. In this research work, the discrete bacterial memetic evolutionary algorithm (DBMEA) as a global searcher was investigated. The proposed algorithm improves the local search by applying the simulated annealing algorithm (SA). This paper presents the experimental results of solving the no-idle flow shop scheduling problem. To compare the proposed algorithm with other researchers’ work, a benchmark problem set was used. The calculated makespan times were compared against the best-known solutions in the literature. The proposed hybrid algorithm has provided better results than methods using genetic algorithm variants, thus it is a major improvement for the memetic algorithm family solving production scheduling problems.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3