The Effect of the Decorative Surface Layer on the Dynamic Properties of a Symmetric Concrete Slab

Author:

Liang HuiqiORCID,Xie WenboORCID,Wei PeiziORCID,Zhou YangORCID,Zhang ZhiqiangORCID

Abstract

In the past few years, the immense advances in building materials and construction techniques have inspired the development of large span, light, and flexible structures with low damping. The low frequency and low damping properties of the mentioned structures result in the problem of serviceability caused by human-induced vibrations. An evaluation of the serviceability of a structure requires obtaining the modes and natural frequencies of the structure via the finite element method (FEM). In the design stage, the structural model considers the contribution of involved elements made to the stiffness of the whole structure, such as beams, slabs, and columns, while the decorative surface layer above the floor is often regarded as an additional mass, regardless of its contribution to the stiffness of the floor slab. In this study, the dynamic properties of a symmetric concrete slab were tested with an ambient excitation method to obtain the dynamic properties of the original empty structure and the structure decorated with a tiled surface, a marble surface, and a terrazzo surface, respectively. The results show that the first-order natural frequencies of floor slabs decorated with tile, marble, and terrazzo finishes are decreased compared to the original empty structure, while the second- and third-order ones are increased, which indicates that it is improper to treat decorative finishes purely as an additional mass. By equating the decorative layer to a certain thickness of additional concrete layer in the finite element model, it is found that, if the decorative surface layer is equated to a 29–31 mm thick additional layer and the weight of the equivalent additional layer is the same as that of the actual decorative surface, the simulation results will be in good agreement with the measured results. Moreover, the test results indicate that the first-order shape function of the structure is symmetric and its second- and third-order shape functions are antisymmetric, which is consistent with the results of simulations under FEM method. This provides a basis for designers to evaluate the contribution of the additional layers in structural serviceability analysis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3