Abstract
This paper deals with symmetrical data that can be modelled based on Gaussian distribution, such as linear mixed models for longitudinal data. The latent factor linear mixed model (LFLMM) is a method generally used for analysing changes in high-dimensional longitudinal data. It is usual that the model estimates are based on the expectation-maximization (EM) algorithm, but unfortunately, the algorithm does not produce the standard errors of the regression coefficients, which then hampers testing procedures. To fill in the gap, the Supplemented EM (SEM) algorithm for the case of fixed variables is proposed in this paper. The computational aspects of the SEM algorithm have been investigated by means of simulation. We also calculate the variance matrix of beta using the second moment as a benchmark to compare with the asymptotic variance matrix of beta of SEM. Both the second moment and SEM produce symmetrical results, the variance estimates of beta are getting smaller when number of subjects in the simulation increases. In addition, the practical usefulness of this work was illustrated using real data on political attitudes and behaviour in Flanders-Belgium.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献