A Fast Deep Perception Network for Remote Sensing Scene Classification

Author:

Dong RuchanORCID,Xu Dazhuan,Jiao Lichen,Zhao Jin,An Jungang

Abstract

Current scene classification for high-resolution remote sensing images usually uses deep convolutional neural networks (DCNN) to extract extensive features and adopts support vector machine (SVM) as classifier. DCNN can well exploit deep features but ignore valuable shallow features like texture and directional information; and SVM can hardly train a large amount of samples in an efficient way. This paper proposes a fast deep perception network (FDPResnet) that integrates DCNN and Broad Learning System (BLS), a novel effective learning system, to extract both deep and shallow features and encapsulates a designed DPModel to fuse the two kinds of features. FDPResnet first extracts the shallow and the deep scene features of a remote sensing image through a pre-trained model on residual neural network-101 (Resnet101). Then, it inputs the two kinds of features into a designed deep perception module (DPModel) to obtain a new set of feature vectors that can describe both higher-level semantic and lower-level space information of the image. The DPModel is the key module responsible for dimension reduction and feature fusion. Finally, the obtained new feature vector is input into BLS for training and classification, and we can obtain a satisfactory classification result. A series of experiments are conducted on the challenging NWPU-RESISC45 remote sensing image dataset, and the results demonstrate that our approach outperforms some popular state-of-the-art deep learning methods, and present high-accurate scene classification within a shorter running time.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3