Efficient Discrimination and Localization of Multimodal Remote Sensing Images Using CNN-Based Prediction of Localization Uncertainty

Author:

Uss MykhailORCID,Vozel BenoitORCID,Lukin VladimirORCID,Chehdi Kacem

Abstract

Detecting similarities between image patches and measuring their mutual displacement are important parts in the registration of multimodal remote sensing (RS) images. Deep learning approaches advance the discriminative power of learned similarity measures (SM). However, their ability to find the best spatial alignment of the compared patches is often ignored. We propose to unify the patch discrimination and localization problems by assuming that the more accurately two patches can be aligned, the more similar they are. The uncertainty or confidence in the localization of a patch pair serves as a similarity measure of these patches. We train a two-channel patch matching convolutional neural network (CNN), called DLSM, to solve a regression problem with uncertainty. This CNN inputs two multimodal patches, and outputs a prediction of the translation vector between the input patches as well as the uncertainty of this prediction in the form of an error covariance matrix of the translation vector. The proposed patch matching CNN predicts a normal two-dimensional distribution of the translation vector rather than a simple value of it. The determinant of the covariance matrix is used as a measure of uncertainty in the matching of patches and also as a measure of similarity between patches. For training, we used the Siamese architecture with three towers. During training, the input of two towers is the same pair of multimodal patches but shifted by a random translation; the last tower is fed by a pair of dissimilar patches. Experiments performed on a large base of real RS images show that the proposed DLSM has both a higher discriminative power and a more precise localization compared to existing hand-crafted SMs and SMs trained with conventional losses. Unlike existing SMs, DLSM correctly predicts translation error distribution ellipse for different modalities, noise level, isotropic, and anisotropic structures.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural Network Architectures for Assessing the Accuracy of Image Registration;2023 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo);2023-11-13

2. Multi-Resolution Feature Extraction and Fusion for Traditional Village Landscape Analysis in Remote Sensing Imagery;Traitement du Signal;2023-06-28

3. From single- to multi-modal remote sensing imagery interpretation: a survey and taxonomy;Science China Information Sciences;2023-03-27

4. Attention-Based Matching Approach for Heterogeneous Remote Sensing Images;Remote Sensing;2022-12-27

5. Improvement of Spatial Localization Accuracy in Learning-Based Patch Matching Using Anisotropic Fractal Brownian Motion Data;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3