Probabilistic Cloud Masking for the Generation of CM SAF Cloud Climate Data Records from AVHRR and SEVIRI Sensors

Author:

Karlsson Karl-Göran,Johansson ErikORCID,Håkansson NinaORCID,Sedlar Joseph,Eliasson SalomonORCID

Abstract

Cloud screening in satellite imagery is essential for enabling retrievals of atmospheric and surface properties. For climate data record (CDR) generation, cloud screening must be balanced, so both false cloud-free and false cloudy retrievals are minimized. Many methods used in recent CDRs show signs of clear-conservative cloud screening leading to overestimated cloudiness. This study presents a new cloud screening approach for Advanced Very-High-Resolution Radiometer (AVHRR) and Spinning Enhanced Visible and Infrared Imager (SEVIRI) imagery based on the Bayesian discrimination theory. The method is trained on high-quality cloud observations from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. The method delivers results designed for optimally balanced cloud screening expressed as cloud probabilities together with information on for which clouds (minimum cloud optical thickness) the probabilities are valid. Cloud screening characteristics over 28 different Earth surface categories were estimated. Using independent CALIOP observations (including all observed clouds) in 2010 for validation, the total global hit rates for AVHRR data and the SEVIRI full disk were 82% and 85%, respectively. High-latitude oceans had the best performance, with a hit rate of approximately 93%. The results were compared to the CM SAF cLoud, Albedo, and surface RAdiation dataset from AVHRR data–second edition (CLARA-A2) CDR and showed general improvements over most global regions. Notably, the Kuipers’ Skill Score improved, verifying a more balanced cloud screening. The new method will be used to prepare the new CLARA-A3 and CLAAS-3 (CLoud property dAtAset using SEVIRI, Edition 3) CDRs in the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF) project.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3