An Infusion Containers Detection Method Based on YOLOv4 with Enhanced Image Feature Fusion

Author:

Ju Lei1,Zou Xueyu1,Zhang Xinjun1,Xiong Xifa1,Liu Xuxun12,Zhou Luoyu1

Affiliation:

1. College of Electronic and Information Engineering, Yangtze University, Jingzhou 434023, China

2. College of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China

Abstract

The detection of infusion containers is highly conducive to reducing the workload of medical staff. However, when applied in complex environments, the current detection solutions cannot satisfy the high demands for clinical requirements. In this paper, we address this problem by proposing a novel method for the detection of infusion containers that is based on the conventional method, You Only Look Once version 4 (YOLOv4). First, the coordinate attention module is added after the backbone to improve the perception of direction and location information by the network. Then, we build the cross stage partial–spatial pyramid pooling (CSP-SPP) module to replace the spatial pyramid pooling (SPP) module, which allows the input information features to be reused. In addition, the adaptively spatial feature fusion (ASFF) module is added after the original feature fusion module, path aggregation network (PANet), to facilitate the fusion of feature maps at different scales for more complete feature information. Finally, EIoU is used as a loss function to solve the anchor frame aspect ratio problem, and this improvement allows for more stable and accurate information of the anchor aspect when calculating losses. The experimental results demonstrate the advantages of our method in terms of recall, timeliness, and mean average precision (mAP).

Funder

National Outstanding Youth Science Fund Project of Nation-al Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3