Towards a Controllable and Reversible Privacy Protection System for Facial Images through Enhanced Multi-Factor Modifier Networks

Author:

Pan Yi-Lun12ORCID,Chen Jun-Cheng3,Wu Ja-Ling14ORCID

Affiliation:

1. Department of Computer Science and Information Engineering, National Taiwan University, Taipei 116, Taiwan

2. National Center for High-Performance Computing, Hsinchu 300, Taiwan

3. Research Center for Information Technology Innovation, Academia Sinica, Taipei 115, Taiwan

4. Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei 106, Taiwan

Abstract

Privacy protection data processing has been critical in recent years when pervasively equipped mobile devices could easily capture high-resolution personal images and videos that may disclose personal information. We propose a new controllable and reversible privacy protection system to address the concern in this work. The proposed scheme can automatically and stably anonymize and de-anonymize face images with one neural network and provide strong security protection with multi-factor identification solutions. Furthermore, users can include other attributes as identification factors, such as passwords and specific facial attributes. Our solution lies in a modified conditional-GAN-based training framework, the Multi-factor Modifier (MfM), to simultaneously accomplish the function of multi-factor facial anonymization and de-anonymization. It can successfully anonymize face images while generating realistic faces satisfying the conditions specified by the multi-factor features, such as gender, hair colors, and facial appearance. Furthermore, MfM can also de-anonymize de-identified faces to their corresponding original ones. One crucial part of our work is design of physically meaningful information-theory-based loss functions, which include mutual information between authentic and de-identification images and mutual information between original and re-identification images. Moreover, extensive experiments and analyses show that, with the correct multi-factor feature information, the MfM can effectively achieve nearly perfect reconstruction and generate high-fidelity and diverse anonymized faces to defend attacks from hackers better than other methods with compatible functionalities. Finally, we justify the advantages of this work through perceptual quality comparison experiments. Our experiments show that the resulting LPIPS (with a value of 0.35), FID (with a value of 28), and SSIM (with a value of 0.95) of MfM demonstrate significantly better de-identification effects than state-of-the-art works. Additionally, the MfM we designed can achieve re-identification, which improves real-world practicability.

Funder

Minister of Science and Technology, Taiwan

National Center for High-performance Computing in Taiwan

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3