Discussion on Electron Temperature of Gas-Discharge Plasma with Non-Maxwellian Electron Energy Distribution Function Based on Entropy and Statistical Physics

Author:

Akatsuka Hiroshi1ORCID,Tanaka Yoshinori2ORCID

Affiliation:

1. Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1-10, O-Okayama, Meguro-ku, Tokyo 152-8550, Japan

2. Department of Energy Sciences, Tokyo Institute of Technology, 2-12-1-N1-10, O-Okayama, Meguro-ku, Tokyo 152-8550, Japan

Abstract

Electron temperature is reconsidered for weakly-ionized oxygen and nitrogen plasmas with its discharge pressure of a few hundred Pa, with its electron density of the order of 1017m−3 and in a state of non-equilibrium, based on thermodynamics and statistical physics. The relationship between entropy and electron mean energy is focused on based on the electron energy distribution function (EEDF) calculated with the integro-differential Boltzmann equation for a given reduced electric field E/N. When the Boltzmann equation is solved, chemical kinetic equations are also simultaneously solved to determine essential excited species for the oxygen plasma, while vibrationally excited populations are solved for the nitrogen plasma, since the EEDF should be self-consistently found with the densities of collision counterparts of electrons. Next, the electron mean energy U and entropy S are calculated with the self-consistent EEDF obtained, where the entropy is calculated with the Gibbs’s formula. Then, the “statistical” electron temperature Test is calculated as Test=[∂S/∂U]−1. The difference between Test and the electron kinetic temperature Tekin is discussed, which is defined as [2/(3k)] times of the mean electron energy U=⟨ϵ⟩, as well as the temperature given as a slope of the EEDF for each value of E/N from the viewpoint of statistical physics as well as of elementary processes in the oxygen or nitrogen plasma.

Funder

JSPS KAKENHI

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3