Effects of Drip Irrigation Design on a Lemon and a Young Persimmon Orchard in Semi-Arid Conditions

Author:

Parra Margarita,Hortelano David,García-Sánchez FranciscoORCID,Intrigliolo Diego S.ORCID,Rubio-Asensio José S.

Abstract

Drip irrigation is presently widely recognized as the most efficient irrigation system that can be used in woody perennial crops. However, uncertainties exist on the more appropriate agronomic design to employ. Here, we summarized the research carried out for three seasons in two young woody perennial crops (persimmon and lemon) in southeastern Spain. Several irrigation designs were compared by maintaining a similar amount of water application but varying the number of emitters and pipelines in each row in the orchard. In the lemon trial, the agronomic irrigation design was additionally combined with different irrigation regimes, comparing full irrigation (FI) with sustained deficit irrigation (SDI). In the persimmon trees, which were still at the juvenility stage, varying the number of emitters per tree or the number of drip lines per tree row, neither affects tree performance nor fruit yield in two out of the three seasons. However, over the entire experimental period, the relative trunk growth increased when more emitters were employed. In the lemon trial, carried out with trees that had reached commercial production, the FI, compared with SDI, increased trunk growth and average fruit weight, while a reduced number of fruits per tree without affecting total yield was observed in the third year of experimentation. The number of emitters per tree only had an effect the first year, increasing lemon fruit weight when the number of drippers per tree increased. In addition, fruit composition was not consistently affected by the irrigation design. It is concluded that, for a given irrigation dose, irrigation frequency, and soil conditions (loam-clay texture), in both very young and more mature trees, increasing the number of emitters or the wetted area only had some slight positive effects on tree performance.

Funder

Agencia Estatal de Investigación

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3