Experimental and Theoretical Explanations for the Initial Difference in the Hydraulic Head in Aquitards

Author:

Xu Yongliang,Du ChaoyangORCID,Ma Haizhi,Pang Wei,Huang Suhang,Li Shimin

Abstract

Accurate estimation of the buoyancy forces exerted on underground structures is a problem in geotechnical engineering that directly impacts the construction safety and cost of these structures. Therefore, studying the buoyancy resistance of underground structures has great scientific and practical value. In this study, an initial difference in the hydraulic head, Δh0, was discovered to be present in aquitards through analysis of water-level data collected from the observation of real-world structures and in laboratory control tests. That is, seepage occurs beyond a threshold Δh0. Analysis of test data reveals that a deviation from Darcy’s law is the theoretical basis for Δh0 and that Δh0 equals the initial hydraulic gradient multiplied by the length of the seepage path. The general consistency between the experimentally measured and theoretically calculated values of Δh0 validates the theoretical explanation for Δh0. The results of this study provide a basis for scientifically calculating the buoyancy resistance required for the construction of underground structures.

Funder

Beijing Key Laboratory of Geotechnical Engineering for Deep Foundation Pit of Urban Rail Transit

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3