Affiliation:
1. Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
Abstract
Federated learning has attracted much attention in fault diagnosis since it can effectively protect data privacy. However, efficient fault diagnosis performance relies on the uninterrupted training of model parameters with massive amounts of perfect data. To solve the problems of model training difficulty and parameter negative transfer caused by data corruption, a novel cross-device fault diagnosis method based on repaired data is proposed. Specifically, the local model training link in each source client performs random forest regression fitting on the fault samples with missing fragments, and then the repaired data is used for network training. To avoid inpainting fragments to produce the wrong characteristics of faulty samples, joint domain discrepancy loss is introduced to correct the phenomenon of parameter bias during local model training. Considering the randomness of the overall performance change brought about by the local model update, an adaptive update is proposed for each round of global model download and local model update. Finally, the experimental verification was carried out in various industrial scenarios established by three sets of bearing data sets, and the effectiveness of the proposed method in terms of fault diagnosis performance and data privacy protection was verified by comparison with various currently popular federated transfer learning methods.
Funder
National Key R&D Program of China
Shanghai Industrial Collaborative Innovation Project
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献