A Two-Turn Shielded-Loop Magnetic Near-Field PCB Probe for Frequencies up to 3 GHz

Author:

Filipašić Mario1,Dadić Martin1ORCID

Affiliation:

1. Department of Electrical Engineering Fundamentals and Measurements, Faculty of Electrical Engineering and Computing, University of Zagreb, Unska 3, 10000 Zagreb, Croatia

Abstract

This paper proposes a novel design of shielded two-turn near-field probe with focus on high sensitivity and high electric field suppression. A comparison of different two-turn loop topologies and their influence on the probe sensitivity in the frequency range up to 3 GHz is presented. Furthermore, a comparison between a single loop probe and a two-turn probe is given and different topologies of the two-turn probe are analyzed and evaluated. The proposed probes were simulated using Ansys HFSS and manufactured on a standard FR4 substrate four-layer printed circuit board (PCB). A measurement setup for determining probe sensitivity and electric field suppression ratio using an in-house made PCB probe stand, vector network analyzer, microstrip line (MSL) and the manufactured probe is presented. It is shown that using a two-turn probe design it is possible to increase the probe sensitivity while minimizing the influence on the probe spatial resolution. The average sensitivity of the proposed two-turn probe compared to the conventional design is increased by 10.1 dB in the frequency range from 10 MHz up to 1 GHz.

Funder

Croatian Science Foundation

Young researchers’ career development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3