Enhancing Sustainable Afforestation through Innovative Earth Auger Design: A Simulation Study in Hilly Regions

Author:

Wang Guofu1,Zhang Wei1,Chen Meiling2ORCID,Ji Min1,Diao Xingliang1,Miao Hu1

Affiliation:

1. Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China

2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

Abstract

The objective of this study was to advance sustainable forestry development through the creation of mechanical equipment, taking into account forestry operational methods. A suspended automatic feeding and retracting excavation device for tree pits was engineered, and its interaction with soil was investigated by integrating the Discrete Element Method (DEM) with Multi-Flexible Body Dynamics (MFBD). Based on simulation results, the research explored the impact mechanisms of the machine on soil transportation, working load, and fatigue lifespan of the spiral blades for different terrains and operating conditions. The coupling simulation method demonstrated the potential for designing and testing forestry equipment in specific operating environments, reducing time and resource consumption for field testing. Terrain significantly influenced soil disturbance variability, while the effect of operating direction was minor. Operational parameters should consider soil and water conservation, favoring the formation of fish-scale pits. Field tests in forested areas validate the practicality of the apparatus, providing valuable insights for the operation and equipment design of earth augers in hilly regions.

Funder

a program of the National Natural Science Foundation of China

the China Green Foundation

Key R&D and Transformation Program of Qinghai Province—Special Project of Transformation of Scientific and Technological Achievements

Publisher

MDPI AG

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Dual Resin Application System for Improved Bamboo-Wood Bonding;International Journal of Adhesion and Adhesives;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3