Enhancing Sustainable Transportation with Advancements in Photonic Radar Technology with MIMO and IIR Filtering for Adverse Weather Conditions

Author:

Chaudhary Sushank1ORCID,Sharma Abhishek2ORCID,Li Qirui1,Meng Yahui3,Malhotra Jyoteesh4

Affiliation:

1. School of Computer, Guangdong University of Petrochemical Technology, Maoming 525000, China

2. Department of Electronics Technology, Guru Nanak Dev University, Amritsar 143005, India

3. School of Science, Guangdong University of Petrochemical Technology, Maoming 525000, China

4. Department of Electronics and Communication, National Institute of Technology, Delhi 110036, India

Abstract

Sustainable transportation is crucial in addressing global road safety and environmental challenges. This study introduces a novel photonic radar system, leveraging Linear Frequency-Modulated Continuous Wave (LFMCW) technology for high-speed data transmission. Operating in a homodyne configuration, this system uses a single oscillator to generate both signal and reference waveforms. It incorporates mode division multiplexing (MDM) to enable the detection and ranging of multiple targets, even under adverse atmospheric conditions. To counter atmospheric attenuation, the system is equipped with a 2 × 2 MIMO technique and an Infinite Impulse Response (IIR) filter. Numerical simulations demonstrate the system’s superior performance in range resolution and target detection, achieving significant power improvements. The IIR filter further enhances detection, achieving a power improvement of 200% for target 1 and 276% for target 2. With low power requirements and enhancement through IIR filter equalization, this system presents a viable option for battery-operated vehicles. This innovative approach offers a low-power high-efficiency solution suitable for battery-operated vehicles, promoting safer and more reliable sustainable transportation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3