Energy Minimization for IRS-Assisted SWIPT-MEC System

Author:

Zhang Shuai1ORCID,Zhu Yujun1,Mei Meng2ORCID,He Xin1ORCID,Xu Yong1

Affiliation:

1. School of Computer and Information, Anhui Normal University, Wuhu 241002, China

2. School of Electronic and Information Engineering, Tongji University, Shanghai 200092, China

Abstract

With the rapid development of the internet of things (IoT) era, IoT devices may face limitations in battery capacity and computational capability. Simultaneous wireless information and power transfer (SWIPT) and mobile edge computing (MEC) have emerged as promising technologies to address these challenges. Due to wireless channel fading and susceptibility to obstacles, this paper introduces intelligent reflecting surfaces (IRS) to enhance the spectral and energy efficiency of wireless networks. We propose a system model for IRS-assisted uplink offloading computation, downlink offloading computation results, and simultaneous energy transfer. Considering constraints such as IRS phase shifts, latency, energy harvesting, and offloading transmit power, we jointly optimize the CPU frequency of IoT devices, offloading transmit power, local computation workload, power splitting (PS) ratio, and IRS phase shifts. This establishes a multi-variate coupled nonlinear problem aimed at minimizing IoT devices energy consumption. We design an effective alternating optimization (AO) iterative algorithm based on block coordinate descent, and utilize closed-form solutions, Dinkelbach-based Lagrange dual method, and semidefinite relaxation (SDR) method to minimize IoT devices energy consumption. Simulation results demonstrate that the proposed scheme achieves lower energy consumption compared to other resource allocation strategies.

Funder

National Key Research and Development Program of China

General Program of the National Natural Science Foundation of China

General Program of the Anhui Provincial Natural Science Foundation

Publisher

MDPI AG

Reference20 articles.

1. Design and optimization for wireless-powered intelligent reflecting surface aided mobile edge computing system;Tang;J. Commun.,2023

2. Latency minimization for intelligent reflecting surface aided mobile edge computing;Bai;IEEE J. Sel. Areas Commun.,2020

3. Intelligent reflecting surface assisted mobile edge computing for Internet of Things;Chu;IEEE Wirel. Commun. Lett.,2021

4. Intelligent-reflecting-surface-aided mobile edge computing with binary offloading: Energy minimization for IoT devices;Yang;IEEE Internet Things J.,2022

5. IRS aided MEC systems with binary offloading: A unified framework for dynamic IRS beamforming;Chen;IEEE J. Sel. Areas Commun.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3