A Feature Fusion Method for Driving Fatigue of Shield Machine Drivers Based on Multiple Physiological Signals and Auto-Encoder

Author:

Liu Kun12,Feng Guoqi2,Jiang Xingyu1,Zhao Wenpeng1,Tian Zhiqiang1,Zhao Rizheng1,Bi Kaihang1

Affiliation:

1. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China

2. College of Business Administration, Northeast University, Shenyang 110819, China

Abstract

The driving fatigue state of shield machine drivers directly affects the safe operation and tunneling efficiency of shield machines during metro construction. To cope with the problem that it is challenging to simulate the working conditions and operation process of shield machine drivers using driving simulation platforms and that the existing fatigue feature fusion methods usually show low recognition accuracy, shield machine drivers at Shenyang metro line 4 in China were taken as the research subjects, and a multi-modal physiological feature fusion method based on an L2-regularized stacked auto-encoder was designed. First, the ErgoLAB cloud platform was used to extract the combined energy feature (E), the reaction time, the HRV (heart rate variability) time-domain SDNN (standard deviation of normal-to-normal intervals) index, the HRV frequency-domain LF/HF (energy ratio of low frequency to high frequency) index and the pupil diameter index from EEG (electroencephalogram) signals, skin signals, pulse signals and eye movement data, respectively. Second, the physiological signal characteristics were extracted based on the WPT (wavelet packet transform) method and time–frequency analysis. Then, a method for driving fatigue feature fusion based on an auto-encoder was designed aiming at the characteristics of the L2-regularization method to solve the over-fitting problem of small sample data sets in the process of model training. The optimal hyper-parameters of the model were verified with the experimental method of the control variable, which reduces the loss of multi-modal feature data in compression fusion and the information loss rate of the fused index. The results show that the method proposed outperforms its competitors in recognition accuracy and can effectively reduce the loss rate of deep features in existing decision-making-level fusion.

Funder

Liaoning Revitalization Talent Program

Top Young and Middle-aged Innovative Talents of Shenyang

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3