Comparative Study of a Fixed-Focus Fresnel Lens Solar Concentrator/Conical Cavity Receiver System with and without Glass Cover Installed in a Solar Cooker

Author:

Wang Hai12ORCID

Affiliation:

1. Department of Mechanics Engineering, School of Mechanics and Automotive Engineering, Zhaoqing University, Zhaoqing 526061, China

2. Department of Energy Engineering, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

Abstract

The glass cover is often situated at the aperture of a cavity receiver in concentrating collectors to reduce heat dissipation. However, the decrease in optical efficiency due to the reflection loss on the surface of the glass cover will directly reduce the thermal efficiency of a collector, especially for a fixed-focus solar concentrator, whose optical axis is generally not coincident with the central axis of the receiver. To fundamentally evaluate the effect of a glass cover on the efficiency of a fixed-focus Fresnel lens solar concentrator/conical cavity receiver system, its performances with and without a glass cover considered under different incidence angles were comparatively investigated. To obtain the optical performance, optical models of the system were first built with TracePro® 7.0 software. An experimental setup was then constructed to test the thermal performance of the system. The results show that the optical efficiency of a system without a glass cover is much higher than that with a glass cover. The difference between them remains unchanged for incidence angle at a range of 0–20°. The time constant of the system with a glass cover is much less than that without a glass cover, in the ranges of 29–33 s and 48–59 s, respectively. The system with a glass cover for a wide range of higher temperature differences also has better thermal efficiency.

Funder

Zhaoqing Science and Technology Innovation Guidance Project

CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry

Key Laboratory of Renewable Energy Electric-Technology of Hunan Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3