Fresnel Lens Solar-Pumped Laser with Four Rods and Beam Merging Technique for Uniform and Stable Emission under Tracking Error Influence

Author:

Tibúrcio Bruno D.1,Liang Dawei1ORCID,Almeida Joana1ORCID,Garcia Dário1ORCID,Catela Miguel1ORCID,Costa Hugo1ORCID,Vistas Cláudia R.1ORCID

Affiliation:

1. Centro de Física e Investigação Tecnológica, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal

Abstract

Significant numerical improvements in Fresnel lens Nd:YAG solar laser collection efficiency, laser quality factors and tracking error compensation capacity by two Fresnel lenses as primary solar concentrators are reported here. A Nd:YAG four-rod side-pumping configuration was investigated. The four-rod side-pumping scheme consisted of two large aspherical lenses and four semi-cylindrical pump cavities, where the Nd:YAG laser rods were placed, enabling an efficient solar pumping of the laser crystals. A 104.4 W continuous-wave multimode solar laser power was achieved, corresponding to 29.7 W/m2 collection efficiency, which is 1.68 times that of the most efficient experimental Nd:YAG side-pumped solar laser scheme with heliostat–parabolic mirror systems. End-side-pumped configuration has led to the most efficient multimode solar lasers, but it may cause more prejudicial thermal effects, poor beam quality factors and a lack of access to both rod end-faces to optimize the resonant cavity parameters. In the present work, an eight-folding-mirror laser beam merging technique was applied, aiming to attain one laser emission from the four laser rods that consist of the four-rod side-pumping scheme with a higher brightness figure of merit. A 79.8 W multimode laser output power was achieved with this arrangement, corresponding to 22.7 W/m2. The brightness figure of merit was 0.14 W, being 1.6, 21.9 and 15.7 times that of previous experimental Nd:YAG solar lasers pumped by Fresnel lenses. A significant advance in tracking error tolerance was also numerically attained, leading to a 1.5 times enhancement in tracking error width at 10% laser power loss (TEW10%) compared to previous experimental results.

Funder

Science and Technology Foundation of Portuguese Ministry of Science, Technology and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference42 articles.

1. Overton, G. (2013). NOVEL LASERS: “Solar-Pumped Nd:YAG Lasers Getting Brighter”, Laser Focus World.

2. Visible solar-pumped lasers;Lando;Opt. Mater.,1999

3. Demonstration of Solar-Pumped Laser-Induced Magnesium Production from Magnesium Oxide;Takashi;Magnes. Technol.,2012

4. Solar-powered lasers;Nat. Photonics,2010

5. Concept of the solar-pumped laser-photovoltaics combined system and its application to laser beam power feeding to electric vehicles;Motohiro;Jpn. J. Appl. Phys.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3