Affiliation:
1. Centro de Física e Investigação Tecnológica, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
Abstract
Significant numerical improvements in Fresnel lens Nd:YAG solar laser collection efficiency, laser quality factors and tracking error compensation capacity by two Fresnel lenses as primary solar concentrators are reported here. A Nd:YAG four-rod side-pumping configuration was investigated. The four-rod side-pumping scheme consisted of two large aspherical lenses and four semi-cylindrical pump cavities, where the Nd:YAG laser rods were placed, enabling an efficient solar pumping of the laser crystals. A 104.4 W continuous-wave multimode solar laser power was achieved, corresponding to 29.7 W/m2 collection efficiency, which is 1.68 times that of the most efficient experimental Nd:YAG side-pumped solar laser scheme with heliostat–parabolic mirror systems. End-side-pumped configuration has led to the most efficient multimode solar lasers, but it may cause more prejudicial thermal effects, poor beam quality factors and a lack of access to both rod end-faces to optimize the resonant cavity parameters. In the present work, an eight-folding-mirror laser beam merging technique was applied, aiming to attain one laser emission from the four laser rods that consist of the four-rod side-pumping scheme with a higher brightness figure of merit. A 79.8 W multimode laser output power was achieved with this arrangement, corresponding to 22.7 W/m2. The brightness figure of merit was 0.14 W, being 1.6, 21.9 and 15.7 times that of previous experimental Nd:YAG solar lasers pumped by Fresnel lenses. A significant advance in tracking error tolerance was also numerically attained, leading to a 1.5 times enhancement in tracking error width at 10% laser power loss (TEW10%) compared to previous experimental results.
Funder
Science and Technology Foundation of Portuguese Ministry of Science, Technology and Higher Education
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference42 articles.
1. Overton, G. (2013). NOVEL LASERS: “Solar-Pumped Nd:YAG Lasers Getting Brighter”, Laser Focus World.
2. Visible solar-pumped lasers;Lando;Opt. Mater.,1999
3. Demonstration of Solar-Pumped Laser-Induced Magnesium Production from Magnesium Oxide;Takashi;Magnes. Technol.,2012
4. Solar-powered lasers;Nat. Photonics,2010
5. Concept of the solar-pumped laser-photovoltaics combined system and its application to laser beam power feeding to electric vehicles;Motohiro;Jpn. J. Appl. Phys.,2017
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献