Hybrid Training Strategies: Improving Performance of Temporal Difference Learning in Board Games

Author:

Fernández-Conde JesúsORCID,Cuenca-Jiménez PedroORCID,Cañas José M.ORCID

Abstract

Temporal difference (TD) learning is a well-known approach for training automated players in board games with a limited number of potential states through autonomous play. Because of its directness, TD learning has become widespread, but certain critical difficulties must be solved in order for it to be effective. It is impractical to train an artificial intelligence (AI) agent against a random player since it takes millions of games for the agent to learn to play intelligently. Training the agent against a methodical player, on the other hand, is not an option owing to a lack of exploration. This article describes and examines a variety of hybrid training procedures for a TD-based automated player that combines randomness with specified plays in a predetermined ratio. We provide simulation results for the famous tic-tac-toe and Connect-4 board games, in which one of the studied training strategies significantly surpasses the other options. On average, it takes fewer than 100,000 games of training for an agent taught using this approach to act as a flawless player in tic-tac-toe.

Funder

Comunidad de Madrid

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3