A Model-Based Approach for Common Representation and Description of Robotics Software Architectures

Author:

Monthe Valery Marcial,Nana Laurent,Kouamou Georges EdouardORCID

Abstract

Unlike conventional software, robotic software suffers from a lack of methods and processes that could systematize and facilitate development. Thus, the application of software engineering techniques is at the heart of current issues in robotics. The work presented in this paper aims to facilitate the development of robotic software and to facilitate communication between experts in the field through the use of software engineering techniques and methods. It proposes RsaML (Robotic Software Architecture Modeling Language), a Domain Specific Modeling Language (DSML) dedicated to robotics, which takes into account the different categories of robotic software architectures and makes it possible to describe the latter independently from the implementation platform. The conceptual model defining the terminology and the hierarchy of concepts used for the description and representation of robotic software architectures in RsaML are presented in this article. RsaML is defined through a meta-model which represents the abstract syntax of the language. The real-time properties of robotic software architectures are identified and included in the meta-model. The use of RsaML is illustrated through several experimental scenarios of the language: the definition of a robotic system and the description of its software architecture, the verification of the semantics of a robotic software architecture, and the modeling of a robotic system whose software architecture does not belong to the usual categories. The support tool used for implementations and experimentation is Eclipse Modeling Framework (EMF). The results of experimentation showed good working of the proposed solution and made it possible to validate the main concepts of the RsaML language.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Design of Independent-Uniform Knowledge Sources of Blackboard Architecture in Timber Harvesting Decision-Making;2024 18th International Conference on Ubiquitous Information Management and Communication (IMCOM);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3