Laser Welding of UNS S33207 Hyper-Duplex Stainless Steel to 6061 Aluminum Alloy Using High Entropy Alloy as a Filler Material

Author:

Mohan Dhanesh G.ORCID,Tomków JacekORCID,Karganroudi Sasan SattarpanahORCID

Abstract

The high entropy alloy (HEA) filler used during the fabrication method determines the reliability of HEAs for steel-aluminum dissimilar alloy configuration. HEAs have a direct impact on the formation of intermetallic compounds (IMC) formed by the interaction of iron (Fe) and aluminum (Al), and influence the size of the joint’s interaction zone. A novel welding process for Fe-Al alloy joints was developed to prevent the development of a brittle iron-aluminum interface. This research involved investigation of the possibility of using HEA powdered filler. Fe5Co20Ni20Mn35Cu20 HEAs was used as a filler for the laser joining lap configuration joining hyper-duplex stainless steel UNS S33207 to aluminum alloy 6061. This HEA has unique properties, such as high strength, good ductility, and high resistance to corrosion and wear. A tiny portion of the stainless-steel area was melted by varying the welding parameters. The high-entropy alloy (HEA) with slow kinetic diffusion and large entropy was employed to aid in producing solid solution structures, impeding the blending of iron and aluminum particles and hindering the development of Fe-Al IMCs. The weld seam was created without the use of Fe-Al IMCs,. The specimen broke at the HEAs/Al alloy interface with a tensile-shear strength of 237 MPa. The tensile-shear strength achieved was 12.86% higher than for the base metal AA 6061 and 75.57% lower than for the UNS S33207 hyper-duplex stainless steel.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3