sEMG Signals Characterization and Identification of Hand Movements by Machine Learning Considering Sex Differences

Author:

Zhang Ruixuan,Zhang Xushu,He Dongdong,Wang Ruixue,Guo Yuan

Abstract

Developing a robust machine-learning algorithm to detect hand motion is one of the most challenging aspects of prosthetic hands and exoskeleton design. Machine-learning methods that considered sex differences were used to identify and describe hand movement patterns in healthy individuals. To this purpose, surface Electromyographic (sEMG) signals have been acquired from muscles in the forearm and hand. The results of statistical analysis indicated that most of the same muscle pairs in the right hand (females and males) showed significant differences during the six hand movements. Time features were used an as input to machine-learning algorithms for the recognition of six gestures. Specifically, two types of hand-gesture recognition methods that considered sex differences(differentiating sex datasets and adding a sex label)were proposed and applied to the k-nearest neighbor (k-NN), support vector machine (SVM) and artificial neural network (ANN) algorithms for comparison. In addition, a t-test statistical analysis approach and 5-fold cross validation were used as complements to verify whether considering sex differences could significantly improve classification performance. It was demonstrated that considering sex differences can significantly improve classification performance. The ANN algorithm with the addition of a sex label performed best in movement classification (98.4% accuracy). In the future, hand movement recognition algorithms considering sex differences could be applied to control systems for prosthetic hands or exoskeletons.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Latest Research Progress on Bionic Artificial Hands: A Systematic Review;Micromachines;2024-07-08

2. MRMR Guided EMG analysis for Precise Hand Gesture Classification;2024 IEEE 3rd International Conference on Control, Instrumentation, Energy & Communication (CIEC);2024-01-25

3. A Novel Surface Electromyographic Gesture Recognition Using Discrete Cosine Transform-Based Attention Network;IEEE Signal Processing Letters;2024

4. Anwendung von Wavelet-Zerlegung und maschinellem Lernen für die sEMG-Signalbasierte Gestenerkennung;Fortschritte in der nicht-invasiven biomedizinischen Signalverarbeitung mit ML;2024

5. Developing a Low-Cost Prosthetic Hand with Real-Time Machine Learning Capabilities;Proceedings of the 8th International Conference on Sustainable Information Engineering and Technology;2023-10-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3