Experimental Study of 3D Concrete Printing Configurations Based on the Buildability Evaluation

Author:

Cui Hongzhi,Li Yuanhong,Cao XiangpengORCID,Huang Mingyang,Tang WaichingORCID,Li Zongjin

Abstract

Different formulations for 3D printable cementitious composites have been developed for extrusion-based printing. However, there is a lack of configuration guides for actual printing operations, which integrate one printable material and one printing system closely. Three testing methods for configuration determination were proposed and tested with three material proportions, with initial setting times of 2, 8, and 13 min, respectively. The building index (BI) measures the layer stacking stability based on the material, scale, and device. The height reduction test (HRT) quantifies the shortening in the height of the printed filaments. The leaning angle (LA) refers to the maximum slope of the stacked layers. In this study, results showed the critical values were (a) 0.167 for the height reduction ratio (HRR), (b) 40° for LA, and (c) 0~19.1, 0~61.1, and 0~99.4 for BI of the three mixtures. They were the meta parameters used to guide the CAD sketching, material development, and printing configurations, including the printing speed and layer height.

Funder

Shenzhen Research Grant

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3