The Influence of Forced Convective Heat Transfer on Hybrid Nanofluid Flow in a Heat Exchanger with Elliptical Corrugated Tubes: Numerical Analyses and Optimization

Author:

Khetib YacineORCID,Abo-Dief Hala M.,Alanazi Abdullah K.ORCID,Said ZafarORCID,Memon SaimORCID,Bhattacharyya Suvanjan,Sharifpur Mohsen

Abstract

The capabilities of nanofluids in boosting the heat transfer features of thermal, electrical and power electronic devices have widely been explored. The increasing need of different industries for heat exchangers with high efficiency and small dimensions has been considered by various researchers and is one of the focus topics of the present study. In the present study, forced convective heat transfer of an ethylene glycol/magnesium oxide-multiwalled carbon nanotube (EG/MgO-MWCNT) hybrid nanofluid (HNF) as single-phase flow in a heat exchanger (HE) with elliptical corrugated tubes is investigated. Three-dimensional multiphase governing equations are solved numerically using the control volume approach and a validated numerical model in good agreement with the literature. The range of Reynolds numbers (Re) 50 < Re < 1000 corresponds to laminar flow. Optimization is carried out by evaluation of various parameters to reach an optimal case with the maximum Nusselt number (Nu) and minimum pressure drop. The use of hybrid nanofluid results in a greater output temperature, a higher Nusselt number, and a bigger pressure drop, according to the findings. A similar pattern is obtained by increasing the volume fraction of nanoparticles. The results indicate that the power of the pump is increased when EG/MgO-MWCNT HNFs are employed. Furthermore, the thermal entropy generation reduces, and the frictional entropy generation increases with the volume fraction of nanoparticles and Re number. The results show that frictional and thermal entropy generations intersect by increasing the Re number, indicating that frictional entropy generation can overcome other effective parameters. This study concludes that the EG/MgO-MWCNT HNF with a volume fraction (VF) of 0.4% is proposed as the best-case scenario among all those considered.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3