Cross-Channel Dynamic Weighting RPCA: A De-Noising Algorithm for Multi-Channel Arterial Pulse Signal

Author:

Peng BoORCID,Gong KaifengORCID,Chen ZhendongORCID,Chen ChaoORCID,Zhang ZhanORCID,Xie Xiaohua,Chen Xihong,Tai Cheng-ChiORCID

Abstract

Pulse wave analysis (PWA) has been widely used in the medical field. A novel multi-channel sensor is employed in arterial pulse acquisition and brings richer physiological information to PWA. However, the noise of this sensor is distributed in the main frequency band of the pulse signal, which seriously interferes with subsequent analyses and is difficult to eliminate by existing methods. This study proposes a cross-channel dynamic weighting robust principal component analysis algorithm. A channel-scaled factor technique is used to manipulate the weighting factors in the nuclear norm. This factor can adaptively adjust the weights among the channels according to the signal pattern of each channel, optimizing the feature extraction in multi-channel signals. A series of performance evaluations were conducted, and four well-known de-noising algorithms were used for comparison. The results reveal that the proposed algorithm achieved one of the best de-noising performances in the time and frequency domains. The mean of h1 in the amplitude relative error (ARE) was 23.4% smaller than for the WRPCA algorithm. Moreover, our algorithm could accelerate convergence and reduce the computational time complexity by approximately 34.6%. These results demonstrate the performance and efficiency of the algorithm. Meanwhile, the idea can be extended to other multi-channel physiological signal de-noising and feature extraction fields.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3