Considerations on Stellarator’s Optimization from the Perspective of the Energy Confinement Time Scaling Laws

Author:

Murari Andrea,Peluso EmmanueleORCID,Spolladore LucaORCID,Vega JesusORCID,Gelfusa Michela

Abstract

The Stellarator is a magnetic configuration considered a realistic candidate for a future thermonuclear fusion commercial reactor. The most widely accepted scaling law of the energy confinement time for the Stellarator is the ISS04, which employs a renormalisation factor, fren, specific to each device and each level of optimisation for individual machines. The fren coefficient is believed to account for higher order effects not ascribable to variations in the 0D quantities, the only ones included in the database used to derive ISS04, the International Stellarator Confinement database. This hypothesis is put to the test with symbolic regression, which allows relaxing the assumption that the scaling laws must be in power monomial form. Specific and more general scaling laws for the different magnetic configurations have been identified and perform better than ISS04, even without relying on any renormalisation factor. The proposed new scalings typically present a coefficient of determination R2 around 0.9, which indicates that they basically exploit all the information included in the database. More importantly, the different optimisation levels are correctly reproduced and can be traced back to variations in the 0D quantities. These results indicate that fren is not indispensable to interpret the data because the different levels of optimisation leave clear signatures in the 0D quantities. Moreover, the main mechanism dominating transport, in reasonably optimised configurations, is expected to be turbulence, confirmed by a comparative analysis of the Tokamak in L mode, which shows very similar values of the energy confinement time. Not resorting to any renormalisation factor, the new scaling laws can also be extrapolated to the parameter regions of the most important reactor designs available.

Funder

Spanish Ministry of Economy and Competitiveness

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Stellarator and Heliotron Devices;Wakatani,1998

2. After ITER, Many Other Obstacles for Fusion Power;Clery,2013

3. Tokamaks;Wesson,2004

4. A general comparison between tokamak and stellarator plasmas

5. Magnetohydrodynamics stability of compact stellarators

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3