Enhancing Antioxidant Activities and Anti-Aging Effect of Rice Stem Cell Extracts by Plasma Treatment

Author:

Ji Sang Hye,Akter Mahmuda,Ko Eun YoungORCID,Choi Eun HaORCID,Keum Young Soo,Han IhnORCID

Abstract

Plant-derived substances exhibit antioxidant and antibacterial activities and have been proven to have beneficial effects in wound healing and skin regeneration. Plant stem cells have recently received much attention as research materials in cosmetic development because they promote regeneration after damage. In this paper, we demonstrate for the first time that the plasma treatment of stem cells obtained from rice-seed embryos can be effective in enhancing antioxidant activity and in regenerating human skin. We investigated this potential utilizing micro-DBD (Dielectric Barrier Discharge) plasma as a pretreatment technique to enhance the vitality and functional activity of rice stem cells. The results of the cell culture experiments show that plasma-treated rice stem cell extracts (RSCE) have promising antioxidant and anti-skin aging activities. The results of quantitative real-time PCR (qRT-PCR) for major antioxidant enzymes and anti-aging genes confirm that the plasma technique used in the pretreatment of RSCE was able to enhance cell activities in skin regeneration, including cell survival, proliferation, and collagen enhancement for Human Fibroblast (HFB) degraded by oxidative stress. These results show that the relatively low energy of less than 300 W and an amount of NOx-based reactive nitrogen species (RNS) from plasma discharge of about 3 μL/L were the key factors and that RSCE, of which the antioxidant activity was enhanced by plasma treatment, appeared to be a major contributor to the protective effect of HFB against oxidative stress. Plasma-treated RSCE induced excellent anti-aging properties by stimulating HFB to promote collagen synthesis, thereby promoting skin regeneration. These properties can protect the skin from various oxidative stresses. This study demonstrates that plasma-treated extracts of stem cells derived from rice-seed embryos have an excellent regenerative effect on aging-treated HFB. Our results demonstrate the potential utility of plasma-treated RSCE as a skin anti-aging agent in cosmeceutical formulations for the first time.

Funder

Cooperative Research Program for Agriculture Science and Technology Development

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Modulation of Skin Collagen Metabolism in Aged and Photoaged Human Skin In Vivo

2. Effects of the complex containing Centella asiaticaand folic acid-fermented extracts, acetyl glutamine, and nicotinic acid adenine dinucleotide phosphate on the inhibition of senescence and melanogenesis, promotion of collagen expression, cellular regeneration, and keratinocyte differentiation, and anti-inflammation;Yoon;Korean J. Aesthet. Cosmetol.,2013

3. Chemiluminescent Detection and Imaging of Reactive Oxygen Species in Live Mouse Skin Exposed to UVA

4. Walnut husk ethanol extract possess antioxidant activity and inhibitory effect of matrix metalloproteinase-1 expression induced by tumor necrosis factor alpha in human keratinocyte;Park;Korean J. Aesthet. Cosmetol.,2013

5. Effect of Dioscorea aimadoimo on anti-aging and skin moisture capacity;Kim;J. Orient. Physiol. Pathol.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3