Artificial Intelligence Applications on Restaging [18F]FDG PET/CT in Metastatic Colorectal Cancer: A Preliminary Report of Morpho-Functional Radiomics Classification for Prediction of Disease Outcome

Author:

Alongi PierpaoloORCID,Stefano AlessandroORCID,Comelli AlbertORCID,Spataro Alessandro,Formica Giuseppe,Laudicella RiccardoORCID,Lanzafame HelenaORCID,Panasiti Francesco,Longo Costanza,Midiri Federico,Benfante Viviana,La Grutta Ludovico,Burger Irene AndreaORCID,Bartolotta Tommaso VincenzoORCID,Baldari Sergio,Lagalla Roberto,Midiri Massimo,Russo GiorgioORCID

Abstract

The aim of this study was to investigate the application of [18F]FDG PET/CT images-based textural features analysis to propose radiomics models able to early predict disease progression (PD) and survival outcome in metastatic colorectal cancer (MCC) patients after first adjuvant therapy. For this purpose, 52 MCC patients who underwent [18F]FDGPET/CT during the disease restaging process after the first adjuvant therapy were analyzed. Follow-up data were recorded for a minimum of 12 months after PET/CT. Radiomics features from each avid lesion in PET and low-dose CT images were extracted. A hybrid descriptive-inferential method and the discriminant analysis (DA) were used for feature selection and for predictive model implementation, respectively. The performance of the features in predicting PD was performed for per-lesion analysis, per-patient analysis, and liver lesions analysis. All lesions were again considered to assess the diagnostic performance of the features in discriminating liver lesions. In predicting PD in the whole group of patients, on PET features radiomics analysis, among per-lesion analysis, only the GLZLM_GLNU feature was selected, while three features were selected from PET/CT images data set. The same features resulted more accurately by associating CT features with PET features (AUROC 65.22%). In per-patient analysis, three features for stand-alone PET images and one feature (i.e., HUKurtosis) for the PET/CT data set were selected. Focusing on liver metastasis, in per-lesion analysis, the same analysis recognized one PET feature (GLZLM_GLNU) from PET images and three features from PET/CT data set. Similarly, in liver lesions per-patient analysis, we found three PET features and a PET/CT feature (HUKurtosis). In discrimination of liver metastasis from the rest of the other lesions, optimal results of stand-alone PET imaging were found for one feature (SUVbwmin; AUROC 88.91%) and two features for merged PET/CT features analysis (AUROC 95.33%). In conclusion, our machine learning model on restaging [18F]FDGPET/CT was demonstrated to be feasible and potentially useful in the predictive evaluation of disease progression in MCC.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3