Enhanced Electrodesorption Performance via Cathode Potential Extension during Capacitive Deionization

Author:

Fu Jie,Wang Haifang,Jin Riya,Liu Pengxiao,Li Ying,Wang Yunyan,Wang Qingwei,Sun Zhumei

Abstract

Complete desorption of contaminants from electrode materials is required for the efficient utilization and long service life of capacitive deionization (CDI) but remains a major challenge. The electrodesorption capacity of CDI in the conventional electrode configuration is limited by the narrow electrochemical stability window of water, which lowers the operating potential to approximately 1.2 V. Here, we report a graphite anode–titanium cathode electrode configuration that extends the cathode potential to −1.7 V and provides an excellent (100%) electrodesorption performance, which is maintained after five cycles. The improvement of the cathode potential depends on the redox property of the electrode. The stronger the oxidizability of the anode and reducibility of the cathode, the wider the cathode potential. The complete desorption potential of SO42− predicted by theoretical electrochemistry was the foundation for optimizing the electrode configuration. The desorption efficiency of Cl− depended on the ionic strength and was negligibly affected by circulating velocities above 112 mL min−1. This work can direct the design optimizations of CDI devices, especially for reactors undergoing chemisorption during the electrosorption process.

Funder

National Natural Science Foundation of China

the Shanxi Province Science Foundation for Youths

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3