Discretization Approach for the Homogenization of Three-Dimensional Solid-Solid Phononic Crystals in the Quasi-Static Limit: Density and Elastic Moduli

Author:

Flores Méndez J.ORCID,Pinón Reyes A. C.,Heredia Jiménez Aurelio H.,Ambrosio Lázaro Roberto C.ORCID,Morales-Sánchez A.ORCID,Moreno Moreno M.ORCID,Luna-López J. A.ORCID,Severiano Carrillo F.,Meraz Melo M. A.ORCID

Abstract

With the application of a homogenization theory, based on the Fourier formalism (which provides efficient and exact formulas by which to determine all the components of the effective stiffness and mass density tensors, valid in the regime of large wavelengths), a new approach to calculate the effective quasi-static response in three-dimensional solid-solid phononic crystals is reported. The formulas derived in this work for calculating the effective elastic parameters show a dependence, in terms of summations over the vectors, of the reciprocal lattice by the discretization of the volume of the inclusion in small parts (e.g., small cubes), to obtain a system of equations from which we define the effective response. In particular, we present the numerical results calculated for several cubic lattices with solid constituents and different shapes of inclusions in the unit cell versus the filling fraction, as well as for fixed values of it. By this means, we analyzed the effect of the type of Bravais lattice of the materials, and the geometry of the inclusions that constitute the three-dimensional phononic array, on the resulting effective anisotropy. Finally, our theory confirms other well-known results with previous homogenization theories as a particular case study. In this regard, the examples and results shown here can be useful for the design of metamaterials with predetermined elastic properties.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3