Abstract
Robot swarms have been used extensively to examine best-of-N decisions; however, most studies presume that robots can reliably estimate the quality values of the various options. In an attempt to bridge the gap to reality, in this study, we assume robots with low-quality sensors take inaccurate measurements in both directions of overestimating and underestimating the quality of available options. We propose the use of three algorithms for allowing robots to identify themselves individually based on both their own measurements and the measurements of their dynamic neighborhood. Within the decision-making process, we then weigh the opinions of robots who define themselves as inaccurately lower than others. Our research compares the classification accuracy of the three algorithms and looks into the swarm’s decision accuracy when the best algorithm for classification is used.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献