Robot Swarms Decide under Perception Errors in Best-of-N Problems

Author:

Khaluf YaraORCID

Abstract

Robot swarms have been used extensively to examine best-of-N decisions; however, most studies presume that robots can reliably estimate the quality values of the various options. In an attempt to bridge the gap to reality, in this study, we assume robots with low-quality sensors take inaccurate measurements in both directions of overestimating and underestimating the quality of available options. We propose the use of three algorithms for allowing robots to identify themselves individually based on both their own measurements and the measurements of their dynamic neighborhood. Within the decision-making process, we then weigh the opinions of robots who define themselves as inaccurately lower than others. Our research compares the classification accuracy of the three algorithms and looks into the swarm’s decision accuracy when the best algorithm for classification is used.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Imprecise evidence in social learning;Swarm Intelligence;2024-04-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3