Analysis of Statistical and Artificial Intelligence Algorithms for Real-Time Speed Estimation Based on Vehicle Detection with YOLO

Author:

Rodríguez-Rangel HéctorORCID,Morales-Rosales Luis AlbertoORCID,Imperial-Rojo RafaelORCID,Roman-Garay Mario AlbertoORCID,Peralta-Peñuñuri Gloria EkaterineORCID,Lobato-Báez MarianaORCID

Abstract

Automobiles have increased urban mobility, but traffic accidents have also increased. Therefore, road safety is a significant concern involving academics and government. Transit studies are the main supply for studying road accidents, congestion, and flow traffic, allowing the understanding of traffic flow. They require special equipment (sensors) to measure the car’s speed. With technological advances, artificial intelligence, and videos, it is possible to estimate the speed in real-time without modifying the installed urban infrastructure. We need to employ public databases that provide reliable monocular videos to generate automated traffic studies. The problem of speed estimation with a monocular camera involves synchronizing data recording, tracking, and detecting the vehicles over the road considering the lanes and distance between cars. Usually, a set of constraints are considered, such as camera calibration, flat roads, including methods based on the homography and augmented intrusion lines, patterns or regions, or prior knowledge about the actual dimensions of some of the objects. In this paper, we present a system that generates a dataset from videos recorded from a highway—obtaining 532 samples; we separated the vehicle’s detection by lane, estimating its speed. We use this data set to compare five different statistical methods and three machine learning methods to evaluate their accuracy in estimating the cars’ speed in real-time. Our vehicle estimation requires a feature extraction process using YOLOv3 and Kalman filter to detect and track vehicles. The Linear Regression Model (LRM) yielded the best results obtaining a Mean Absolute Error (MAE) of 1.694 km/h for the center lane and 0.956 km/h for the last lane. The results were compared with several state-of-the-art works, having competitive performance. Hence, LRM is fast estimating speed in real time and does not require high computational resources allowing a future hardware implementation.

Funder

Consejo Nacional de Ciencia y Tecnología

National Technological Institute of Mexico

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3