Seismic Stability of Dual Tunnels in Cohesive–Frictional Soil Subjected to Surcharge Loading

Author:

Zeng Yongge,Wu GaoqiaoORCID

Abstract

In this study, a self-developed adaptive finite element limit analysis (AFELA) code was adopted to explore the stability of dual tunnels in cohesive–frictional soil subjected to surcharge loading and seismic action. Parametric studies of different influential factors, including the depth of tunnels, horizontal distance between tunnels, seismic acceleration coefficient, unit weight, cohesion and internal friction angle of soils, were conducted using the AFELA code. An adaptive meshing technique was adopted for optimal accuracy and efficiency, and a pseudostatic method was used to simulate the seismic action. Strict upper bound (UB) and lower bound (LB) results with relative errors of less than 7% were acquired. Detailed design tables were presented to facilitate the engineering design, and three typical failure patterns, including single side-wall failure, half-cross-shaped failure and cross-shaped failure, corresponding to different stable levels, were summarized for a deeper insight into how the failure mechanism evolved under different conditions. The results indicated that the variations in soil unit weight and void depth affected the seismic bearing capacity almost linearly. Furthermore, the dual tunnel system is vulnerable to seismic actions, and the stability of tunnels was further undermined by the adverse effects of additional seismic-caused interactions between two adjacent tunnels.

Funder

Postgraduate Scientific Research Innovation Project ofHunan Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3