An Optimal Sizing Design Approach of Hybrid Energy Sources for Various Electric Vehicles

Author:

Chen Syuan-YiORCID,Chiu Chu-Yang,Hung Yi-HsuanORCID,Jen Kuo-Kuang,You Gwo-Huei,Shih Po-Lin

Abstract

In this paper, we present a discussion about green energy sources that have been widely utilized in electric vehicles (EVs). To achieve different requirements of various EVs, the correct sizing of energy sources is crucial so that the cost and output performance will be optimized. In this research, three energy sources, supercapacitors (SCs), lithium titanate oxide (LTO) batteries, and Nickel Manganese Cobalt (NCM) (or Li3) batteries, were considered for hybridization. An effective global search algorithm (GSA) was designed for optimal sizing of hybrid electric energy systems (HEESs). The GSA procedures were: (1) vehicle specification and performance requirements of energy sources, (2) determination of cost function and constraints, (3) GSA optimization with for-loops, (4) optimal results. Five examples of EVs, the electric sedan, long-distance electric bus, short-distance electric bus, electric forklift, and electric sports car, were analyzed for optimal hybrid energy combination under different criteria and specifications. The GSA effectively optimized the designs of energy sizing. The performance indices and vehicle requirements studied were the specific price, specific energy at a constant volume, specific energy at a constant mass, and specific power at a constant mass for three energy sources, SCs, LTO batteries, and Li batteries. The vehicle requirements including the maximum output power, vehicle acceleration, climbability, and maximum speed have been formulated as the design constraints. A numerical analysis of five types of EVs was analyzed for optimal sizing of the HEES and the optimal position of the DC/DC converter with the lowest cost function. The integrated system and control designs of the HESS using the GSA, more applications for green energy sources, and different types of EVs will be studied in the future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

1. Dimensioning and Optimization of Hybrid Li-Ion Battery Systems for Evs;Jan;World Electr. Veh. J.,2018

2. Li-ion battery materials: Present and future;Naoki;Materialstoday,2015

3. A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development

4. On the sizing and energy management of an hybrid multistack fuel cell—Battery system for automotive applications;Neigel;Int. J. Hydrogen Energy,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3