Feasibility Study of Anaerobic Codigestion of Municipal Organic Waste in Moderately Pressurized Digesters: A Case for the Russian Federation

Author:

Kovalev Andrey A.,Mikheeva Elza R.,Kovalev Dmitriy A.,Katraeva Inna V.,Zueva SvetlanaORCID,Innocenzi Valentina,Panchenko VladimirORCID,Zhuravleva Elena A.,Litti Yuri V.ORCID

Abstract

Anaerobic digestion (AD) is a promising option to obtain renewable energy in the form of biogas and reduce the anthropogenic impact on the environment. In recent years there has been increasing interest in using pressurized digesters to improve the quality of biogas. However, maintaining high overpressure increases the requirements for the explosion safety of digesters. Consequently, there are natural limitations in the available technologies and facilities suitable for full-scale operation. In this work, we aimed to evaluate the possibility of using overpressure in the digester to improve the efficiency of codigestion of common municipal organic waste–sewage sludge and the organic fraction of municipal solid waste. Three levels of moderate excess pressure (100, 150 and 200 kPa) were used to meet requirements of existing block-modular anaerobic bioreactors based on railway tanks, which are widely utilized for AD in the Russian Federation. There was no significant change in methane content in biogas (65% ± 3%) at different values of overpressure, hydraulic retention time (HRT) and organic loading rate (OLR). The maximum methane and energy production rates (2.365 L/(L·day) and 94.27 kJ/(L·day), respectively) were obtained at an overpressure of 200 kPa, HRT of 5 days and OLR of 14 kg VS/(m3·day). However, the maximum methane yield (202.44 mL/g VS), energy yield (8.07 kJ/g VS) and volatile solids (VS) removal (63.21%) were recorded at an overpressure of 150 kPa, HRT of 7 days and OLR of 10.4 kg VS/(m3·day). The pressured conditions showed better performance in terms of AD stability at high OLRs.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Adsorption-Oxidation Technology of Wastewater Recycling in Agroindustrial Complex Enterprises

2. Effective purification of concentrated organic wastewater from agro-industrial enterprises, problems and methods of solution;Artamonov;AMA Agric. Mech. Asia Afr. Lat. Am.,2018

3. Hydrogen production at centralized utilization of agricultural waste

4. Principles and potential of the anaerobic digestion of waste-activated sludge

5. Sludge Engineering: The Treatment and Disposal of Wastewater Sludges;Sanin,2011

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3